
J Glob Optim (2009) 43:277–297
DOI 10.1007/s10898-007-9271-9

Column enumeration based decomposition techniques
for a class of non-convex MINLP problems

Steffen Rebennack · Josef Kallrath ·
Panos M. Pardalos

Received: 15 August 2007 / Accepted: 9 December 2007 / Published online: 28 December 2007
© Springer Science+Business Media, LLC. 2007

Abstract We propose a decomposition algorithm for a special class of nonconvex mixed
integer nonlinear programming problems which have an assignment constraint. If the assi-
gnment decisions are decoupled from the remaining constraints of the optimization problem,
we propose to use a column enumeration approach. The master problem is a partitioning
problem whose objective function coefficients are computed via subproblems. These pro-
blems can be linear, mixed integer linear, (non-)convex nonlinear, or mixed integer nonlinear.
However, the important property of the subproblems is that we can compute their exact global
optimum quickly. The proposed technique will be illustrated solving a cutting problem with
optimum nonlinear programming subproblems.

Keywords MINLP · Column enumeration · Decomposition · Packing

1 Introduction

Problems assigning projects to departments, activities to units, delivery orders to vehicles, or
packing geometric objects to given areas are well known real world problems. Modeling these
problems mathematically can easily lead to nonconvex mixed integer nonlinear programming
(MINLP) problems. Solving them is in general very challenging as they belong to the ‘harder’
cases of the NP−hard problems.

Column enumeration is a special variant of column generation and is applicable when a
small number of columns is sufficient. This is, for instance, the case in real world cutting

S. Rebennack (B) · P. M. Pardalos
Center of Applied Optimization, University of Florida, Gainesville, FL 32611, USA
e-mail: steffen@ufl.edu

J. Kallrath
Department of Astronony, University of Florida, Gainesville, FL 32611, USA
e-mail: kallrath@astro.ufl.edu

P. M. Pardalos
e-mail: pardalos@ufl.edu

123

278 J Glob Optim (2009) 43:277–297

stock problems when it is known that the optimal solution have only a small amount of
trimloss. This, usually, eliminates most of the pattern. Column enumeration naturally leads
to a type of selecting columns or partitioning models. A collection of illustrative examples
contained in Schrage (2006, Sect. 11.7) covers several problems of grouping, matching,
covering, partitioning, and packing in which a set of given objects has to be grouped into
subsets to maximize or minimize some objective function. Discussion of column enumeration
in the context of column generation can be found in Wilhelm (2001). Despite the limitations
with respect to the number of columns, column enumeration has some advantages:

• no pricing problem — in contrast to column generation,
• easily applicable to mixed integer programming (MIP) problems,
• column enumeration is relatively easy to implement.

Decomposition methods for mathematical programming have been widely studied in the
past and used especially to solve large-scale optimization problems. A survey can be found in
the book edited by Pardalos and Resende (2002, Chap. 7). The decomposition approach we
develop, is a generalization of the one by Kallrath (2004, Chap. 4.3.3) who solves an online-
version of a vehicle routing problem. In this application, a column is a set of orders. The
subproblem is to route and schedule the orders assigned to vehicles. For solving the routing
(sequencing) and scheduling problem she developed a tailor-made solution algorithm. In this
article, we apply such an approach to the packing or cutting problem described by Kallrath
(2008) where the columns are subsets of the objects to be packed into given rectangular plates
of known size. The subproblems are nonconvex nonlinear programming (NLP) problems.
However, it is possible to solve them to global optimality in short time.

The structure of this article is as follows. A detailed problem description is provided in
Sect. 2. The solution approach is discussed in Sect. 3. Generalizations of the decomposition
approach are provided in Sect. 4. In Sect. 5, we describe the column concept and dominance
rules to be applied to a problem in which a set of objects, circles, need to be assigned to
a set of given rectangular plates. In addition, some numerical experiments and results are
included. Section 6 summarizes this work and gives an outlook on generalizations and future
research enhancements. In the Appendix, we discuss some analytical solutions for cutting
up to three circles from a rectangular plate.

2 Problem description

The nonconvex MINLP problems we want to solve are assignment problems in which a set
I of n objects should be allocated to a set of resources R. Each object i ∈ I needs to be
allocated to exactly one resource r ∈ R. Resource r can cover several objects. The allocation
decisions are represented by binary variables αir being 1, if object i is allocated to a resource
r and 0 otherwise. We assume the following four structural properties.

Ass. 1: The cost for assigning objects to resources are additive with respect to the resources.
Ass. 2: There are no cost involved if resource r is not used.
Ass. 3: The assignment constraints are decoupled from the remaining constraints.
Ass. 4: The constraints associated with resource r are satisfied in case resource r is not

assigned any object.

Examples for a problem meeting this framework are the vehicle routing problem in which
orders are allocated to vehicles, or the problem of assigning and cutting geometric objects
from given steel plates.

123

J Glob Optim (2009) 43:277–297 279

Let the optimization problem contain the continuous variables x ∈ R
nc , the integer

variables y ∈ Z
ng and the binary variables α ∈ {0, 1}n representing the allocation deci-

sions. We define vector α.r := (α1r , α2r , . . . , αnr). Assumption Ass. 1 gives us that the
total cost to minimize is the sum over the resources r of a cost function f depending on
the variables x, y and α.r . Hence, Ass. 1 states that the objective function is separable with
respect to α.r . We get from Ass. 2 that α.r = �0 implies

f (x, y, �0) = 0. (1)

Let g(x, y, α.r) = �0 and h(x, y, α.r) ≥ �0 be the constraint functions. Recognize that with
Ass. 3, the constraint functions g and h depend only on the assignment of the objects to a
particular resource r , but not on all the resource; i.e., f and g only depend on α.r instead
of α. Ass. 4 can then be expressed in formula as: α.r = �0 implies g(x, y, α.r) = �0 and
h(x, y, α.r) ≥ �0. Finally, the optimization problem can be written as

F := min
∑

r

f (x, y, α.r) (2)

subject to
∑

r

αir = 1; ∀i (3)

and

g(x, y, α.r) = �0; ∀r (4)

h(x, y, α.r) ≥ �0; ∀r, (5)

as well as the domain constraints

x ∈ R
nc , y ∈ Z

ng , α ∈ {0, 1}n. (6)

The objective function and the constraint functions g and h are problem-specific and can
be of any type—except for the structural assumptions we make. Hence, in most cases this
problem is nonconvex. If there are many resources r to consider, then the problem becomes
quickly very large and difficult to solve to global optimality.

3 Solution approach

If the assignment decisions are decoupled from the remaining constraints of the optimization
problem (Ass. 3 of Sect. 2), we propose to use a column enumeration approach. A column c is
any index set Ic ⊆ I. The set C is the power set of I and contains 2n−1 columns, not counting
the empty set. As the number of columns grows exponentially in n, we can use a complete
enumeration only for small values of n, i.e., smaller than 10 or 15. We obtain a decomposed
problem with respect to the columns c. The master problem is a partitioning problem whose
objective function coefficients are computed in several subproblems. Such a subproblem can
be a linear programming (LP), mixed integer linear programming (MILP), NLP, or MINLP
problem. In addition to the four structural properties of Sect. 2, the subproblems have to meet
the following important properties.

Ass. 5: The submodel contains only constraints connected to the objects
contained in column c. We call this the composition requirement.

Ass. 6: We can compute the exact global optimum of the submodel in short time.

123

280 J Glob Optim (2009) 43:277–297

The master problem is the partitioning model

FM := min
∑

cr

Fcrδcr (7)

subject to ensuring that each object i is exactly contained in one resource, where the indicator
function Ic(i) = 1 if column c contains object i and 0 otherwise:

∑

cr|Ic(i)=1

δcr = 1; ∀i, (8)

The following constraints guarantee that each resource r is used at most for one column c,
∑

c

δcr ≤ 1; ∀r. (9)

Finally, there are the domain constraints for the binary variable δ

δcr ∈ {0, 1}; ∀c, r. (10)

Note that (8) is the counterpart of (3) in the original problem.
For each column and resource combination, the coefficients Fcr are computed via sub-

problems. For each subproblem, the column is fix, defining

βi =
{

1, if i ∈ Ic

0, otherwise
; ∀i.

The subproblems Pcr are then defined as

Pcr : Fcr = min f (x, y, β) (11)

subject to

g(x, y, β) = 0 (12)

h(x, y, β) ≥ 0, (13)

and

x ∈ R
nc , y ∈ Z

ng . (14)

Finally, this allows us to define the objective function coefficients

Fcr =
{

Fcr , if problem (7) to (10) is feasible
M, otherwise

; ∀cr, (15)

for the master problem, where M is a number sufficiently large. However, for computational
purposes, one would fix the corresponding δcr variable to 0 and assign an arbitrary (finite)
number as its coefficient Fcr . We call the master problem infeasible, if FM = M .

Theorem 3.1 Problem (2)–(6) is equivalent to the master problem (7)–(10) with the coeffi-
cients defined in (15) and obtained from the subproblems (11)–(14).

Proof We show that there is a one-to-one correspondence of the solutions to the original
problem (2)–(6) and the master problem (7)–(10); which means that if one of the problems
is feasible and has a bounded optimal solution, then we can derive a solution to the other
problem with the same objective function value. Furthermore, the original problem has a
bounded optimal solution if and only if the master problem also has one.

123

J Glob Optim (2009) 43:277–297 281

Assume that the original problem defined by (2) is feasible and let (̂x, ŷ, α̂) be a finite
optimal solution. Now, define

δcr :=
{

1, if α̂ir = 1∀i ∈ Ic

0, otherwise
, ∀c, r. (16)

This definition implies

∑

r

α̂ir =
∑

cr|Ic(i)=1

δcr .

Notice that
∑

i α̂ir is the number of objects assigned to resource r . In addition, this defines
the unique column c, associated with resource r , as c = ∪i |̂αir=1{i} ensuring that δ satisfies
constraint (9). Hence, δ is a feasible solution to the master problem. If α̂.r = �0, then we get
from the definition (16) that δcr = 0 for all c, meaning that resource r is not assigned any
object. As we have M · 0 = 0, we get that

∑
c Fcrδcr = 0. Otherwise, there exists exactly

one c such that δcr = 1 and
∑

c Fcrδcr = Fcr . (11) implies that Fcr = min f (x, y, α̂.r)

where variables (x, y) satisfy constraints (12)–(14). From the composition requirement of the
constraints g and h, Ass. 5, we get that (x, y) := (̂x, ŷ) is a global optimal solution to problem
Pcr . Hence, we have that Fcr = Fcr . With Ass. 2, this leads to

∑
cr Fcrδcr = ∑

r f (̂x, ŷ, α̂.r).
All this yields now to

F ≥ FM.

Vice versa, let δ̂ be a finite optimal solution to the master problem. Define

αir :=
{

1, if ∃c : δ̂cr = 1 ∧ Ic(i) = 1
0, otherwise

, ∀i, r.

With this definition, constraint (8) implies that α satisfies constraint (3). With assumption
Ass. 4 and Ass. 5, constraints (8) and (9), the x̂ and ŷ solutions to the subproblem Pcr can be
glued together in an obvious way to (x, y), satisfying constraints (4)–(6). Now, if there exists
no c such that δcr = 1, then

∑
c Fcrδcr = 0. This equals f (x, y, α.r) according to Ass. 2.

Otherwise, if there exists such a c, then
∑

c Fcrδcr = Fcr = Fcr = f (x, y, α.r). This shows
that

F ≤ FM.

With the construction of the solutions above, we get that the original problem is feasible with
a finite optimal solution, if and only if the master problem is feasible.
�

Depending on functions f , g, and h, the subproblem Pcr can be a LP, MILP, NLP or
MINLP problem. Again we mention that the important property of the subproblem is that
we can compute its global minimum quickly.

Note that the master problem consists of an exponential number of binary variables. More
precisely, the master problem (7)–(10) has

(
2|I| − 1

) |R| binary variables and |I| + |R|
constraints.

The generation of the columns is problem-specific. The sequence in which to solve them
is also problem-specific and allows us to apply dominance rules and feasibility implications.
We illustrate this in detail for a cutting problem in Sect. 5.

123

282 J Glob Optim (2009) 43:277–297

4 Generalizations

In this section, we provide various generalizations classified into those which do not lead to
a modified column generation schemes or submodels, and those which do.

4.1 Unchanged subproblems

The problem can be generalized or abstracted from the original meaning to treat any problem
with binary variables αir and the assignment constraints (3)

∑

r

αir = 1; ∀i

as long as the subproblem only involves the objects contained in the column and no other
ones, i.e., the assignment decisions can be decoupled from the rest of the problem.

A first way of generalization is obviously to replace (3) by
∑

r

αir � Bi; ∀i, (17)

where Bi ∈ N and the relation � ∈ {=,≤,≥}, implies that object i has to be assigned to
exactly Bi resources, to at most Bi resources, or to at least Bi resources. In that case, (8) is
replaced by

∑

cr|Ic(i)=1

δcr � Bi; ∀i. (18)

Note that as object i could now be contained in several columns, the dominance rules could
be affected and need to be revised.

A second step of generalization is to consider constraints of the type
∑

r

Airαir � Bi; ∀i. (19)

Let us explain the meaning of the coefficients Air in (19) by considering only the case∑
r Airαir ≤ Bi . If object i is allocated to resource r a certain cost Air has to be paid.

The total cost is not allowed to exceed the budget, Bi , of object i. The column enumeration
counterpart of (19) is

∑

cr|Ic(i)=1

Airδcr � Bi; ∀i. (20)

A third generalization possibility is to consider (17) and/or (19) simultaneously with
(3). This leads to the simultaneous presence of (8) and (18) and/or (20). Obviously, this
complicates solving the partitioning model. Note that the subproblems are not affected at all
by these generalizations.

4.2 Subproblem modification and generation of columns

Another step is to generalize variables αir to be positive integer instead of binary. Let us call
the new variables zir and we get

∑

r

zir � Bi; ∀i. (21)

123

J Glob Optim (2009) 43:277–297 283

In this case, the number of columns to consider increases, as now object i is assigned zir

times to resource r . Hence, we get for each possible value of the variable additional columns.
Recognize that the number of additional columns is again exponential in the number of
objects in I. More precisely, it is 2(n−1)zir − 1, as object i has to be contained in all previous
columns 2, 3, up to zir times. The constraint for the master problem generalizes to

∑

crj |Icij =1

jδcr � Bi; ∀i, (22)

where the indicator function Icij is defined as

Icij =
{

1, if i is contained exactly j times in column c

0, otherwise
; ∀c, i, j.

The index j can be interpreted as the multiplicity of object i contained in column c.
Similar to (19), we obtain the following generalization

∑

r

Airzir � Bi; ∀i, (23)

with Air ≥ 0. The master problem reads in this case as
∑

crj |Icij =1

jAirδcr � Bi; ∀i. (24)

5 Cutting circles from several given rectangles

This problem is a subproblem of those described by Josef Kallrath (2008). A set of circles
should be packed into a set of given stocked rectangles of known width and length. The
objective is to select some of the available rectangles in order to minimize trimloss. In a
second step the objects should be arranged in the rectangles in such a way that a remaining
rectangle of maximum size is obtained; this is, however, not the focus of this paper. We
see in Sect. 5.1 that this cutting/allocation problem does meet the structure of our general
framework. It serves us as a basis for numerical experiments.

Before we apply our approach we review some of the relevant literature. The problem
falls into the class of two-dimensional cutting or packing problems of regular objects. It
comes close to the Dyckhoff (1990) classification 2/V/D/F; i.e., two-dimensional, V=kind
of assignment: a selection of objects and all items, D=assortment of large objects: different
figures, and F=assortment of small items: few items of different figures. Related problems
are strip packing (given length, width to be minimized) and bin packing (given width, length
to be minimized) into rectangles.

There are several publications treating the problem of fitting different-sized circles into
rectangles of given size. Fraser and George (1994) discuss packing circles of the same size
in a container of fixed dimensions. George et al. (1995) formulated a mixed integer non-
linear programming problem for packing different-sized pipes into a rectangular container
which is equivalent to packing unequal circles into rectangles. They also addressed the pro-
blem of how to allocate pipes to various containers in a shipment in order to minimize the
number of containers. They developed a number of heuristic procedures including a genetic
algorithm for approximately solving this problem. Because of the container-shipping back-
ground of their problem, they also discussed the stability of packing solutions in their paper.
Stoyan and Yaskov (1998) discussed and developed exact and approximate algorithms to

123

284 J Glob Optim (2009) 43:277–297

compute the global optimum of placing either rectangles or circles into a given rectangle.
This paper is very much recommended to the reader because it contains useful analytical
results and also reviews many results obtained by Russian and Ukrainian researchers among
them V. L. Rvachev. Stoyan and Yaskov (2004) extended their approach to strip packing of
circles into one rectangle of fixed width and length to be minimized. Huang et al. (2005)
developed a greedy algorithm for packing unequal circles into given rectangles. The pro-
blem of packing circles into given rectangles has been shown to be NP− hard; cf. Lenstra
and Rinnooy Kan (1979). Although already 15 years old and mostly on packing into given
rectangles, it is still inspiring to read the invited review article by Dowsland and Dowsland
(1992) on packing problems.

5.1 Modeling

Let us formulate the above problem of cutting circles, i ∈ I with |I| ≥ 2, from a set of
rectangles, r ∈ R, as a MINLP problem. We denote by Ri the radius of circle i, Wr is the
width of rectangle r and Lr is its length. The objective is to minimize the total trimloss,
represented in (25), while assigning each of the circles to exactly one rectangular plate, see
(26). The cutting process is subject to non-overlapping constraints (28) where variable xi is
the center of circle i in two dimensions, i.e., d = {1, 2}. The center of the circles have to
meet the boundary constraints (29), (30), and (31).

min
∑

r

yr

(
LrWr − π

∑

i

αirR
2
i

)
(25)

s.t.
∑

r

αir = 1; ∀i (26)

yr ≥ αir ; ∀i (27)
∑

d

(
xid − xjd

)2 ≥ αir · αjr

(
Ri + Rj

)2 ; ∀i, j, r; i �= j (28)

αir (xid − Ri) ≥ 0; ∀i, d, r (29)

αir (xi1 + Ri) ≤ Wr ; ∀i, r (30)

αir (xi2 + Ri) ≤ Lr ; ∀i, r (31)

xi ∈ R
d+; ∀i (32)

yr ∈ {0, 1}; ∀r (33)

αir ∈ {0, 1}; ∀i, r (34)

Next, let us define what a column represents in this application. It is a fixed subset of the
set of all circles. The master problem is then given by (7)–(10). Now, let us consider the
subproblem in this case. Once a column c and a resource r , which is in this case a rectangular
plate, are fixed, the subproblem to be solved becomes the following cutting problem.

Fcr = min LrWr − π
∑

i∈c

R2
i (35)

s.t.
∑

d

(
xid − xjd

)2 ≥ (Ri + Rj)
2; ∀i, j ∈ c; i �= j (36)

(xid − Ri) ≥ 0; ∀i ∈ c, d (37)

123

J Glob Optim (2009) 43:277–297 285

(xi1 + Ri) ≤ Wr ; ∀i ∈ c (38)

(xi2 + Ri) ≤ Lr ; ∀i ∈ c (39)

xi ∈ R
d+; ∀i (40)

The objective function value is the trimloss for column c assigned to resource plate r and
is therefore known. As in the original formulation (25)–(34), we have the non-overlapping
constraints (36). Recognize that if column c contains only one circle, then this set of constraints
is empty. In addition, there are the boundary constraints for the center of the circles (37),
(38), and (39). Notice that the integer variable y for each sub problem is fix to value 1 and
hence does not appear in formulation (35)–(40).

As the objective function (35) is not directly dependent on the variables xi , the above
problem becomes a decision problem whether column c can be packed into the rectangular
plate r or not. This can be solved, for instance, by fixing the width of the rectangular plate
and calculating the minimal length. For this, one can use the solution approach proposed by
Kallrath (2008).

With all the discussions above, we are now able to recognize that the cutting problem
formulated as constraints (25)–(34) is a nonconvex MINLP and meets the special structure
of the proposed approach; i.e., it satisfies the six assumptions Ass. 1–Ass. 6:

• The objective function (25) is a sum over the resources; hence the cost are additive with
respect to the resources.

• There are no cost involved if resource r is not used; i.e., variable yr will be 0 in any
optimal solution of problem (25)–(34).

• The assignment decisions are decoupled from the remaining constraints, i.e., they do not
appear in the problem formulation (35)–(40),

• If no object is assigned to rectangular plate r , then variable α.r = �0 implying that
constraints (28)–(31) are satisfied. By feasibility, also constraint (27) is satisfied.

• The composition requirement is satisfied, as formulation (35)–(40) involves only variables
associated with objects of column c.

• The sub problems are nonconvex because of the reverse-convex constraints (36). How-
ever, they can be solved to global optimality quickly for a small number of objects, see
Kallrath (2008).

We point out that formulation (25)–(34) is stated only for illustration purposes and is not
considered to be used as an optimization formulation, because it can be strengthened in many
ways.

For this particular cutting application, one can exploit information about the columns and
the rectangular plates. First of all, the decision problem for some columns and resources can
be decided very quickly; for instance if the area of the circles to pack is larger than the area
of the rectangular plate, or if one of the circles is too large to fit into the plate at all. We
want to discuss here two of such approaches. In the first approach the analytical solutions
for the case of two and three circles discussed in Appendices A.2 and A.3, respectively, are
included. In the second approach, we consider some dominance rules which we discuss in
the following subsection.

5.2 Dominance rules

Due to the structure of the optimization problem it is possible to derive the following feasibility
and infeasibility implications.

123

286 J Glob Optim (2009) 43:277–297

1. Column dominance: If the column c is feasible for a given rectangle, all sub-columns
c′ ⊂ c are feasible as well and there is no need to solve the sub problem for the sub-
columns c′, as we can calculate the trimloss for this column resource combination without
optimization.

2. Rectangle dominance: If column c is feasible for a rectangle r1 with length l and width
w it is also feasible for a larger rectangle r2 with length and width (L,W) with L ≥ l

and W ≥ w (r1 ⊆ r2). One could think that the column selection variable δcr2 can be
fixed to zero because the waste associated with r2 for that column and resource is larger
than the waste for r1, but it is not true. The reason is that each rectangle can be used
at most once and an optimal solution could be “forced” to use a rectangle with larger
waste.

3. Implied infeasibility: If column c is infeasible for a rectangle then each super-column of
c′ ⊃ c is also infeasible for this rectangle.

4. Object dominance: feasibility: If a column c is feasible and contains object o, then all
objects which are “smaller” than o can take the place of o. Hence, the corresponding
columns are also feasible. More generally, all combinations of objects, which can be
packed without overlap into object o, can take the place of o. The resulting columns are
also feasible.

5. Object dominance: infeasibility: If a column c is infeasible and contains object o, then all
columns containing instead of object o one which is “greater” than o are also infeasible.
More generally, if object ô is not contained in column c, then all combinations of objects
from column c which can be packed without overlap into object ô can be replaced by ô

and the resulting column is also infeasible.
6. Identical objects: If the problem instance contains objects which are mathematically

identical, then there is no need to consider all possible subsets of them combined with
the other objects. It is enough to take only the number of objects into account instead
of its numbering. So for m identical objects, you have only m combinations instead of
2m − 1. This brakes the symmetry of the variables αir for identical objects.

5.3 Numerical experiments and results

In this section, we discuss some implementation issues and computational results for the
cutting problem introduced above. We start with a short review of software packages, which
guarantee to provide global optimal solutions. A brief discussion of the solvers including
stochastic methods can be found for instance in a survey paper by Pintér (1996a). A more
detailed overview of deterministic methods is given by Liberti (2006, Chap. 8). The αBB
method by Floudas et al. is a Branch-And-Bound algorithm using quadratic underestima-
tions, (1995, 2000,1997). GAMS currently supports three global optimization solvers. The
Branch-And-Reduce Optimization Navigator (BARON) by Sahinidis et al. (1995, 1996). In
addition, there is the Lipschitz Global Optimization (LGO) solver by Pintér, (1996b), which
also supports trigonometric functions.The third solver LINDOGlobal is provided by Lindo
Systems, Inc. and uses Branch-And-Cut techniques (2004).

Following Kallrath (2004, Chap. 4.3.3) the power set of I is enumerated by generating
the binary representation of k, k = 1, . . . , 2n with n = |I|. The problem is modeled in
GAMS, version 22.2, and the NLP problems are solved with BARON. The computations
are executed on a Pentium Intel Centrino Duo 2.00 GHz; 1.00 GB RAM with Windows XP
platform. The structure of the program is as follows. After a column is selected, the decision
problem for all rectangles is solved. First, some analytical methods are applied to decide on
feasibility. We discuss this in greater detail with the Tables 5 and 6. If none of these methods

123

J Glob Optim (2009) 43:277–297 287

Table 1 Rectangle area is uniformly distributed in [1.70, 3.00], [3.00, 6.00]
cir. # rect. # prob. # feasible # solved # res. waste CPU (sec.)

8 20 5,100 690 115 3 9.882 27.06
8 50 12,750 2,024 322 3 9.210 66.55
8 100 25,500 4,589 580 2 8.399 207.33
8 250 63,750 12,706 1,104 2 7.466 387.63
8 500 127,500 26,172 1,651 2 7.153 687.59
8 1,000 255,000 51,510 2,242 2 7.050 930.81
8 5,000 1,275,000 250,821 4,499 2 6.704 2,304.08
8 10,000 2,550,000 499,956 5,790 2 6.704 4,152.20

computed a solution, BARON is called to solve problem (35)–(40). After the solution is
obtained, several feasibility and infeasibility implications are used to obtain solutions for
other column-rectangle combinations.

Consider now Table 1. In this test, the number of circles and its radii are fixed. The number
of circles can be found in the first column, # cir., and it is in all cases eight. The radii are 0.5,
0.6, 0.7, 0.8, 0.9, 1.1, 1.2, and 1.3, respectively. For each instance, a set of rectangular plates is
randomly generated with a C++ program using the rand() function. The width and length of
the rectangles are uniformly chosen from the interval [170, 300] and [300, 600], respectively,
with a discretization of 0.01. All rectangular plates are different. The number of rectangular
plates can be found in the second column labeled with # rect. In the next columns, there are the
number of problems to be solved, # prob., the number of feasible problems, i.e., the decision
problem (35) – (40) is positive, and the actual number of problems solved with BARON. All
other problems could be solved analytically, heuristically or with the dominance rules. The
last three columns show the number of resources used in a globally optimal solution, # res.,
the total trimloss or waste, waste, and finally the CPU time in seconds.

Table 1 shows that the number of NLPs to solve increases linearly while the number of
problems increase exponentially as well as the number of feasible problems. Obviously, the
number of used resource plates decreases with the increase of the number of plates and with
this also the total trimloss. We realize that the CPU time also increases exponentially, which
is surprising at the first glance as the number of NLPs being solved increases only linearly.
However, checking the solution times for each column-rectangle combination shows that
the exponential increase in the running time results from the increase in time spent for each
problem solved. Loosely speaking, the implications for other columns and rectangles work
better with more rectangles, leaving the more difficult problems to the solver.

Figure 1 shows an optimal solution for two instances considered in Table 1. The case of 20
different rectangular plates is given in Fig. 1a. We clearly see that the length of resource, i.e.,
rectangular plate, 11 and 16 could be smaller and still fit the circles. The solution for 10,000
rectangular plates, shown in Fig. 1b, gives the reason why the waste for the two instances
of 5,000 and 10,000 rectangles of Table 1 are equal. As the solution for the case of 10,000
resources uses only rectangles with number 2,693 and 2,790, there are optimal solutions for
these two cases which are identical.

What we could not see in Table 1 is the variation of the CPU time dependent on the
number of rectangular plates. It should be intuitively clear that the variation of the CPU time
should decrease when increasing the number of rectangular plates. Numerical tests confirm
this. The differences in the running times are extremely large for the case of 20 rectangular
plates. In order to be able to interpret the following computational results meaningfully, we

123

288 J Glob Optim (2009) 43:277–297

(a) (b)

Fig. 1 Optimal solution for different numbers of rectangular plates

Table 2 250 rectangles with different random seed number

cir. # rect. seed # feasible # solved # res. waste CPU (s)

8 250 0 12,706 1,104 2 7.466 387.63
8 250 48,632 11,951 1,054 2 7.462 434.38
8 250 54,284 13,019 1,134 2 7.830 471.53
8 250 72,356 10,804 970 2 7.685 333.47
8 250 98,623 11,520 1,040 2 7.921 417.63
8 250 287,614 11,812 1,009 2 7.551 358.58
8 250 356,218 11,913 1,074 2 7.891 389.41
8 250 7,893,492 12,927 1,108 2 7.685 479.77
8 250 17,234,506 12,847 1,148 2 6.919 405.05
8 250 23,678,257 12,666 1,058 2 7.715 321.81

The rectangle area is uniformly distributed in [1.70, 3.00], [3.00, 6.00]

need a more or less “stable” CPU running time for different problem instances. Therefore
consider Table 2. The number of different rectangular plates is fixed to 250 and different
rectangular plates are generated with the help of different seed numbers for the random
generator provided by C++. Recognize that the computational results of row one in Table 2
and of row four in Table 1 are from the same run. Furthermore, we see that the differences in
the last five columns are quite small, especially the CPU times are very similar. Therefore,
for the following tests, we fix the number of rectangular plates to 250 and consider always,
except for Table 3, the same combination provided by the seed number zero, resulting to the
values of the first row.

Next, let us look at the dependence of the sizes of the rectangular plates to the computa-
tional results. Those are provided in Table 3. Again, we fix the number of circles to eight as
well as the number of rectangular plates to 250. We vary only the maximal length of the rec-
tangular plates, shown in column three, max L. From these results we recognize that the
number of problems to be solved increases with the increase of the allowed length of
the rectangular plates and with this also the CPU time. The reason is that the dominance
rules do not work so well when the rectangular plates are more different. In addition, as more
circles potentially fit into one particular rectangular plate, the CPU time increases, see also

123

J Glob Optim (2009) 43:277–297 289

Table 3 Different rectangle sizes

cir. min L max L # solved # res. area waste CPU (s)

8 3.00 3.25 197 4 31.61 9.968 30.99
8 3.00 3.50 258 4 31.21 9.565 40.02
8 3.00 4.00 498 3 30.09 8.443 81.11
8 3.00 4.50 687 3 29.40 7.754 125.24
8 3.00 5.00 848 3 29.41 7.761 223.25
8 3.00 5.50 955 2 29.18 7.537 362.50
8 3.00 6.00 1,104 2 29.11 7.466 387.63
8 3.00 6.50 1,147 2 29.14 7.495 532.06
8 3.00 7.00 1,201 2 28.98 7.333 805.81
8 3.00 7.50 1,213 2 29.13 7.489 1, 166.14

Table 4 Different number of circles

cir. # rect. # prob. # feasible # solved # res. area waste CPU (s)

8 250 63,750 12,706 1,104 2 29.11 7.466 387.63
9 250 127,750 17,635 1,875 3 33.62 8.843 646.28

10 250 255,750 24,460 2,942 3 37.25 9.627 1,237.34
11 250 511,750 30,371 3,877 3 41.71 10.626 1,761.76
12 250 1,023,750 42,882 5,924 4 44.95 11.574 3,606.41
13 250 2,047,750 48,544 7,061 4 50.63 13.122 5,957.99

Kallrath (2008). An indicator that more circles fit into the plates is given in column # res.
The column named area gives the total area of the used rectangular plates. We realize that
the trimlosses for these circles are quite huge, approximately 30%. For the next test, we fix
the upper bound of the rectangular plates to 6.00 and use the rectangles generated for the
instance of row seven.

We study now the influence of the number of circles to the computational results. As we use
the column enumeration technique as a solution method, the number of circles should greatly
influence the running time. As the number of circles increases, the number of columns grows
exponentially with base 2. Consider now Table 4. We realize that the number of problems
indeed increases exponentially. Interestingly, the number of feasible problems as well as the
number of problems to be solved with BARON increases only linearly. However, the CPU
time increases exponentially. The reason is that it is computationally more expensive to solve
the decision problem (35)–(40) for a larger amount of circles; or more precisely, the running
time grows exponentially with the number of circles. Figure 2 shows a global optimal solution
for the last instance of Table 4, having 13 circles and 250 rectangles.

Let us now have a look at the impact of the analytical solutions and the dominance
rules implemented. Let us mention that it is empirically efficient to go through the columns
randomly in order to exploit many dominances. The motivation is that there are some column-
rectangle combinations which are computationally “hard” in the sense that they can only be
solved by none (or very few) dominance rules. On the other hand, such column-rectangle
combinations allow many implications for other columns.

We consider first the feasibility implications in Table 5. For each column and rectangular
combination, the algorithm first applies some analytical solutions. It checks two obvious
cases: If the column exists only of one circle or if all circles in the column can be aligned
next to each other horizontally or vertically. The number of detected feasibilities is listed in

123

290 J Glob Optim (2009) 43:277–297

Fig. 2 Optimal solution for an instance with 13 circles and 250 rectangles

Table 5 Feasibility implications

cir. # feas. # solver # triv. # circles # box # rect. # sub col. # cutting

8 12,706 450 41 211 24 1,806 2,594 7,580
9 17,635 715 80 177 16 2,355 2,959 11,333

10 24,460 1,124 93 177 17 2,966 3,474 16,607
11 30,371 1,487 87 301 15 3,241 4,857 20,383
12 42,882 2,257 123 347 16 4,052 4,813 31,274
13 48,544 2,722 152 374 18 4,177 6,961 34,140

the 4th column with label # triv. The next step is only applied when the number of circles
in the column is two or three. If this is true, some analytical investigations are exploited,
stated in Appendices A.2 and A.3, respectively. The number of detected cuttings with this
method is given in column labeled # circles. As a last method before calling the BARON
solver, a heuristic to pack the circles is performed. The circles are replaced by squares with
length equal to the double radius. In this way, the circles are the incircles of the squares. The
resulting boxes are packed heuristically by arranging them in different orders. The number
of valid cuttings found is given in column # box. If none of the analytical methods or the
heuristic described finds a solution, the NLP problem (35)–(40) is formulated and solved with
BARON. Afterwards, the following dominance rules for the feasibility case are implemented.
First, the feasibility implication for all other rectangular plates are exploited, see # rect. Then,
all sub columns are considered for all rectangular plates (# sub col). And finally, if no other
implications apply, then the dominance rule 4 of Sect. 5.2 is used (# cutting). In column three,
the number of feasible problems resulting from NLP solutions is given. The computational
results stated in Table 5 show that the dominance rules detect a huge fraction of all feasible
problems. In particular, the object dominance, provided in the last column, finds more than
half of all feasible column-rectangle combinations.

Next, let us have a closer look at the infeasibility implications given in Table 6. We start
with checking for the trivial infeasibilities: if the largest circle of the column fits into the
rectangle or if the sum of the area of the circles is larger than the area of the rectangle. The
number of these infeasibilities is given in column # triv. Next, infeasibilities resulting from the
analytical solutions of two circles are tested. They are provided in column # 2 circles. After

123

J Glob Optim (2009) 43:277–297 291

Table 6 Infeasibility implications

cir. #infeas. # solver # triv. # 2 circles # rect. # super col. # cutting

8 51,044 654 127 111 1,918 23,713 24,521
9 110,115 1,160 211 177 2,888 46,094 59,585

10 231,290 1,816 310 206 4,729 38,446 185,783
11 481,379 2,390 295 232 4,814 104,842 368,806
12 980,868 3,667 421 275 6,884 235,330 734,291
13 1,999,206 4,339 453 350 7,825 102,834 1,883,405

the detected infeasibility from the described methods, or from the solver, the dominance rules
are exploited. Afterwards, the implied infeasibilities with respect to rectangular plates for
this particular column are tested and the number of detected infeasibilities with this method
is provided in column # rect. Next, all super columns and rectangle combinations are checked
and the results are listed in column # super col. Last, the infeasibility of object dominance
introduced in Sect. 5.2 is used and stated in the last column. From the results given in Table
6, we recognize that the dominance rules detect many infeasibilities and especially the super
columns and the object dominance take a large fraction.

6 Conclusions

We have discussed a general approach to decompose a certain class of nonconvex mixed
integer programming problems. We started by an assignment structure which we genera-
lized and formulated the column enumeration approach. For a special cutting problem we
demonstrated the efficiency of this approach; we assigned circles to up to 10,000 rectangles
available on stock.

Future research could focus on applying this solution technique to a variety of other
assignment problems. For instance, the cutting of not only circles but in addition rectangles,
polygons or convex objects, i.e., ellipses, into given rectangular plates.

Acknowledgements The authors would like to thank Hanif D. Sherali (Virginia Tech) for suggesting the
paper of W. E. Wilhelm. In addition, we want to thank two unknown referees for their constructive comments
and suggestions. Research was partially supported by NSF and Airforce Grants.

Appendix

A Implications from analytic solutions

In this appendix, we discuss the packing of one, two or three circles. For the case of one or
two circles, we give a complete solution for all cases. For the packing of three circles we
provide sufficient and necessary conditions for the length and width of the rectangles for
some particular cases. For this appendix, let the radii satisfy the condition R1 ≥ R2 ≥ R3.

A.1 One circle

The case of one circle is obvious. Feasibility is possible only for W ≥ 2R1 and L ≥ 2R1.
Thus, the problem is infeasible, if and only if min{W,L} < 2R1.

123

292 J Glob Optim (2009) 43:277–297

(a) (b)

Fig. 3 Optimum placement of two circles by given width W

A.2 Two circles

A first test is, of course, to check feasibility for the two circles individually as described in
Appendix A.1. This implies that the problem is infeasible if min{W,L} < 2 max{R1, R2} =
2R1.

Let us define the critical radius by

R
∗
2 = R1

(√
2 − 1

)2
. (41)

If R2 ≤ R
∗
2 then the problem is feasible, iff min{W,L} ≥ 2 max{R1, R2} = 2R1. This result

comes from a geometric argument, placing the two circles into the square of length 2R1.
Theorem A.1 provides sufficient and necessary conditions based on the following question.

For given width W , what is the minimum length Lmin(W) for obtaining feasibility?

Theorem A.1 For given width W of a rectangle, the two circles with radii R1 ≥ R2 ≥ 0 fit
into the rectangle without overlap, if and only if

L ≥
{

2R1, if W ≥ (√
R1 + √

R2
)2

R1 + R2 + √
2W(R1 + R2) − W 2, if 2R1 ≤ W <

(√
R1 + √

R2
)2 (42)

Proof Let (x1, y1) and (x2, y2) be the coordinates of the circles with radius R1 and R2,
respectively and the rectangle’s width side W be parallel to the x-axis; as illustrated in Fig. 3.
Without loss of generality, we can assume that x1 = y1 = R1. With this, it is optimal to
place the smaller circle along the parallel line to the x-axis with y = W − R2 and “move”
it until it touches either the large circle or the y-axis. Let us first consider the case when
W ≤ 2(R1 + R2) which is illustrated in Fig. 3a. Obviously, we get for the minimum length
of the rectangle

Lmin(W) ≥ 2R1,

and in addition the bound

Lmin(W) ≥ R1 + d + R2.

123

J Glob Optim (2009) 43:277–297 293

With the Pythagorean law, we can solve for d and get

d =
√

(R1 + R2)2 − (W − (R1 + R2))
2

=
√

2W(R1 + R2) − W 2.

Let us now calculate the critical value Wc for the width W for which both circles fit into the
rectangle with length L = 2R1. Such a case is shown in Fig. 3b. This can be done by solving
the quadratic equation

√
2Wc(R1 + R2) − W 2

c + R2 = R1,

which gives

Wc =
(√

R1 ± √
R2

)2
.

As we need that W ≥ 2R1 we get

Wc =
(√

R1 + √
R2

)2
. (43)

Therefore, the two circles fit in a rectangle with length L = 2R1, if for its width holds
Wc ≤ W ≤ 2(R1 + R2). As the case W > 2(R1 + R2) is obvious, we get the proposed
result.
�

From the proof above, we get coordinates for an optimum placement of the two circles
dependent on the width W

(x1, y1) = (R1, R1),

(x2, y2) =
{

(R2, R1 + 2
√

R1R2), if W ≥ 2(R1 + R2)

(R1 + √
2W(R1 + R2) − W 2,W − R2), if 2R1 ≤ W < 2(R1 + R2)

According to the problem, the width W of the rectangle is given and we could derive
an optimum length Lmin(W). Considering W as a variable and minimizing the product
Lmin(W) · W yields a rectangle with minimum area which contains both circles.

A.3 Three Circles

A first test to check is whether the two largest circles can be packed into the given rectangle
of width W and length L using the criteria described in Appendix A.2. If this is not possible,
we have proven the infeasibility of packing these three circles into this rectangle. Otherwise,
we know Lmin(W) for packing the two largest circles from Theorem A.1.

Without loss of generality, we can assume that W ≤ L. Obviously, W ≥ 2R1. Let us
label the three circles with C1, C2, and C3. To avoid notational confusion, we distinguish in
the following the cases of the minimal rectangular length with respect to circles C1 and C2

only and with respect to all three circles. The first case is labeled with Lmin,2(W), indicating
that only the largest two circles are considered. In the following, we discuss two cases for
feasible packings. Case II gives hint how to derive a complete solution theory for the optimal
packing of three circles with arbitrary radii.

Case I: All three circles fit into the rectangle with W = L = 2R1.
For this case, we use Eq. 43 with value Wc = 2R1 to derive a critical value R

∗
2, resulting

in

R
∗
2 =

(√
2R1 − √

R1

)2
,

123

294 J Glob Optim (2009) 43:277–297

(a) (b)

(c)

Fig. 4 Optimum placement of three circles satisfying x1 ≤ x2 ≤ x3

which gives the condition

R2 ≤ (3 − 2
√

2)R1

for the circle C2 to fit into this rectangle. The third circle C3 fits also in this rectangle, as
R3 ≤ R2. Coordinates for an optimal packing of these circles are, for instance,

(x1, y1) = (R1, R1),

(x2, y2) = (R2, R2),

(x3, y3) = (R3, 2R1 − R3).

From this point on, we assume R2 ≥ (3 − 2
√

2)R1.
Case II: x1 ≤ x2 ≤ x3.
We divide this case in three sub-cases and provide justification for this approach at the

end. These cases are illustrated in Fig. 4.
II.1: Corresponding to Fig. 4a.
Theorem A.1 gives us for the minimal length of the rectangle for a given width W and

the two circles C1 and C2 the value Lmin,2(W) = R1 + R2 + √
2W(R1 + R2) − W 2. Now,

let us calculate the critical radius R
∗
3 for C3 to fit into this rectangle. This implies that

Lmin(W) = Lmin,2(W). As x1 ≤ x2 ≤ x3, there is always the possibility to place, in an
optimal packing, circle C3 as indicated in Fig. 4a. Using the relation given in the figure, we
get a quadratic inequality for R

∗
3 with the solutions

R
∗
3 ≷ R1 + Lmin,2(W) ± 2

√
R1Lmin,2(W).

123

J Glob Optim (2009) 43:277–297 295

As R
∗
3 < R1, we are only interested in the second solution. In addition, we have to make

sure that the two circles C2 and C3 can be placed “above” each other. This provides another
upper bound

R
∗
3 ≤

(√
W − √

R2

)2
,

where we used once again Eq. 43 for circles C2 and C3. The minimum of these two bounds
provides, finally, the critical radius

R
∗
3 = min

{
R1 + Lmin,2(W) − 2

√
R1Lmin,2(W),

(√
W − √

R2

)2
}

. (44)

The coordinates of the three circles are given by, for instance,

(x1, y1) = (R1, R1),

(x2, y2) = (R1 +
√

2W(R1 + R2) − W 2,W − R2),

(x3, y3) = (R1 + R2 +
√

2W(R1 + R2) − W 2 − R3, R3).

II.2: Corresponding to Fig. 4b.
In this case, radius R3 has to satisfy the bounds

R1 + Lmin,2(W) − 2
√

R1Lmin,2(W) ≤ R3 ≤
(√

W − √
R2

)2
. (45)

According to Fig. 4b, we derive an expression for

Lmin = R1 + h + R2,

which is dependent on h. The value of h is the (positive) solution of

(h + R2 − R3)
2 +

(
W − R2 − R3 −

√
(R1 + R2)2 − h2

)2 = (R1 + R3)
2 . (46)

Recognize, that Eq. 46 is quadratic in variable h. The coordinates of the circles are, for
instance,

(x1, y1) = (R1,W −
√

(R1 + R2)
2 − h2 − R2),

(x2, y2) = (Lmin(W) − R2,W − R2),

(x3, y3) = (Lmin(W) − R3, R3).

II.3: Corresponding to Fig. 4c.
For this case we have that

R3 ≥
(√

W − √
R2

)2
. (47)

This enables us to calculate

Lmin = R1 +
√

(R1 + R2)2 − (W − R1 − R2)2 +
√

(R2 + R3)2 − (W − R2 − R3)2 + R3

= R1 + √
W(2R1 + 2R2 − W) + √

W(2R2 + 2R3 − W) + R3.

Recognize that W ≤ 2(R2 +R3) ≤ 2(R1 +R2), because of inequality (47) and 2
√

R2
√

R3 ≤
R2 + R3 holds for all positive R2 and R3. For the coordinates of the three circles we get, for
instance,

123

296 J Glob Optim (2009) 43:277–297

(x1, y1) = (R1, R1),

(x2, y2) = (R1 +
√

2W(R1 + R2) − W 2,W − R2),

(x3, y3) = (Lmin(W) − R3, R3).

These three sub-cases provide an optimal packing of three circles with arbitrary radii for
the special case that the coordinates for the three circles satisfy x1 ≤ x2 ≤ x3. This is true,
as we systematically consider optimal packings for different radii of circle three in the sub-
cases discussed above. Using this technique for all six perturbations of the x-coordinates of
the circles, one can derive a complete solution for the packing of three circles. Exploiting
symmetry arguments helps to reduce the number of sub-cases to be discussed.

References

Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of MINLP problems in process synthesis
and design. Comput. Chem. Eng. 21(Suppl. S), S445–S450 (1997)

Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: Global optimization of mixed-integer nonlinear pro-
blems. AICHE J. 46(9), 1769–1797 (2000)

Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: A global optimization method for general constrained
nonconvex problems. J. Glob. Optim. 7(4), 337–363 (1995)

Dowsland, K.A., Dowsland, W.B.: Packing Problems. Euro. J. Oper. Res. 56, 2–14 (1992)
Dyckhoff, H.: A Typology of Cutting and Packing Problems. Euro. J. Oper. Res. 44, 145–159 (1990)
Fraser, H.J., George, J.A.: Integrated Container Loading Software for Pulp and Paper Industry. Euro. J. Oper.

Res. 77, 466–474 (1994)
Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications, vol. 37 of Nonconvex

Optimization and Its Applications, pp. 309–554. Kluwer Academic Publishers (2000)
George, J.A., George, J.M., Lamar, B.W.: Packing Different-sized Circles into a Rectangular Container. Euro.

J. Oper. Res. 84, 693–712 (1995)
Huang, W.Q., Li, Y., Akeb, H., Li, C.M.: Greedy Algorithms for Packing Unequal Circles into a Rectangular

Container. J. Oper. Res. Soc. 56(5), 539–548 (2005)
Kallrath, J.: Online Storage Systems and Transportation Problems with Applications: Optimization Models

and Mathematical Solutions, vol. 91 of Applied Optimization, pp. 92–104. Kluwer Academic Publishers,
Norwell, MA (2004)

Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim (2008). doi: 10.
1007/s10898-007-9274-6

Lindo Systems: Lindo API: User’s Manual. Lindo Systems, Inc., Chicago (2004)
Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of Packing, Covering, and Partitioning Problems. In: Schri-

jver, A. (ed.) Packing and Covering in Combinatorics, pp. 275–291.Mathematisch Centrum, Amster-
dam (1979)

Liberti, L., Maculan, N. (eds.): Global Optimization: From Theory to Implementation, vol. 84 of Nonconvex
Optimization and Its Applications, pp. 223–232. Springer (2006)

Pintér, J.D.: Continuous global optimization software: A brief review. Optima, 52, 1–8 (1996a). See also http://
plato.la.asu.edu/gom.html

Pintér J.D. Global Optimization in Action: Continuous and Lipschitz Optimization: Algorithms, Implemen-
tations and Applications, vol. 6 of Nonconvex Optimization and Its Applications. Kluwer Academic
Publishers (1996b)

Pardalos P.M., Resende M.G.C. (eds.): Handbook of Applied Optimization pp. 337–351. Oxford University
Press (2002)

Ryoo, H.S., Sahinidis, N.V.: Global optimization of non-convex NLPs and MINLPs with application in process
design. Comput. Chem. Eng. 19(5), 551–566 (1995)

Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glo. Optim. 8(2), 107–
138 (1996)

Sahinidis, N.V.: BARON: A general purpose global optimization software package. J. Glob. Optim. 8(2), 201–
205 (1996)

Schrage, L.: Optimization Modeling with LINGO. LINDO Systems, Inc., Chicago, IL (2006)
Stoyan, Y.G., Yaskov, G.N.: Mathematical model and solution method of optimization problem of placement

of rectangles and circles taking into account special constraints. Int. Trans. Oper. Res. 5(1), 45–57 (1998)

123

http://dx.doi.org/10.1007/s10898-007-9274-6
http://dx.doi.org/10.1007/s10898-007-9274-6
http://plato.la.asu.edu/gom.html
http://plato.la.asu.edu/gom.html

J Glob Optim (2009) 43:277–297 297

Stoyan, Y.G., Yaskov, G.N.: A mathematical model and a solution method for the problem of placing various-
sized circles into a strip. Euro. J. Oper. Res. 156, 590–600 (2004)

Wilhelm, W. E.: A technical review of column generation in integer programming. Optim. Eng. 2, 159–
200 (2001)

123

	Column enumeration based decomposition techniquesfor a class of non-convex MINLP problems
	Abstract
	1 Introduction
	2 Problem description
	3 Solution approach
	4 Generalizations
	4.1 Unchanged subproblems
	4.2 Subproblem modification and generation of columns

	5 Cutting circles from several given rectangles
	5.1 Modeling
	5.2 Dominance rules
	5.3 Numerical experiments and results

	6 Conclusions
	Acknowledgements
	A.1 One circle
	A.2 Two circles
	A.3 Three Circles

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

